

Si5530 Preliminary Data Sheet

SiPHY[™] OC-192/STM-64 SONET/SDH RECEIVER

Speed Interface

Detection

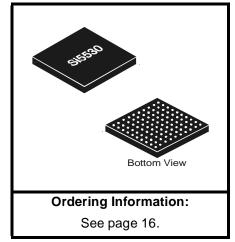
Features

Complete low power, high speed, receiver with integrated limiting amplifier, clock and data recovery (CDR), and 1:16 demultiplexer:

- Data Rates Supported: OC-192/ STM-64, 10GbE, 10.7 Gbps FEC
- Low Power Operation 0.6 W (typ)
- Small Footprint 99-Pin BGA Package (11 x 11 mm)
- Integrated Limiting Amplifier
- Programmable Slicing Level and Sampling Phase
- Applications
- Sonet/SDH/ATM Routers
- Add/Drop Multiplexers
- Digital Cross Connects
- Optical Transceiver Modules

SFI-4 Compliant LVDS Low

Lock-to-Reference Control

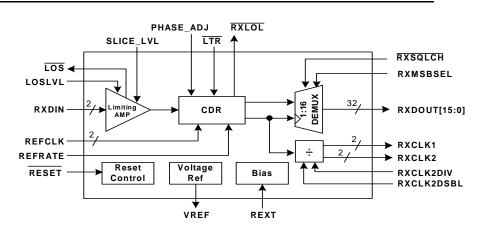

LVTTL Compatible Outputs

Optional 3.3 V Supply Pin for

Single 1.8 V Supply Operation

Loss-of-Signal and Loss-of-Lock

Sonet/SDH Test Equipment



Description

The Si5530 is a fully integrated low-power receiver for high-speed serial communication systems. It combines post amplification, clock and data recovery, and a 1:16 deserialization as required in OC-192/STM-64 applications. Support for data streams up to 10.7 Gbps is also provided for applications that employ forward error correction (FEC). A fully integrated clock and data recovery unit with integrated loop filter ensures optimal jitter performance while reducing design complexity.

The Si5530 represents a new standard in low power and small size for high-speed serial receivers. It operates from a single 1.8 V supply over the industrial temperature range (-40° C to 85° C).

Functional Block Diagram

Preliminary Rev. 0.31 8/01 Copyrig

Copyright © 2001 by Silicon Laboratories

Si5530-DS031

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.

TABLE OF CONTENTS

Section

Page

Electrical Specifications	
Functional Description	
Limiting Amplifier	
Loss-of-Signal Detection	
Slicing Level Adjustment	
Clock and Data Recovery (CDR) 8	
Sample Phase Adjustment	
Lock Detect	
Lock-to-Reference	
Reference Clock	
Deserialization	
Serial Input to Parallel Output Relationship	
Auxiliary Clock Output	
Data Squelch	
•	•
Bias Generation Circuitry	
Voltage Reference Output	
Si5530 Pinout: 99-Pin BGA 11	
Pin Descriptions: Si5530 13	5
Ordering Guide	5
Package Outline	,
Contact Information	

Electrical Specifications

Table 1. Recommended Operating Conditions

		Min [*]	Тур	Max*	Unit
T _A		-40	25	85	°C
V _{DD33}		1.71	_	3.47	V
V _{DD}		1.71	1.8	1.89	V
,	V _{DD33}	V _{DD33}	V _{DD33} 1.71	V _{DD33} 1.71 —	V _{DD33} 1.71 — 3.47

Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions Typical values apply at nominal supply voltages and an operating temperature of 25°C unless otherwise stated.

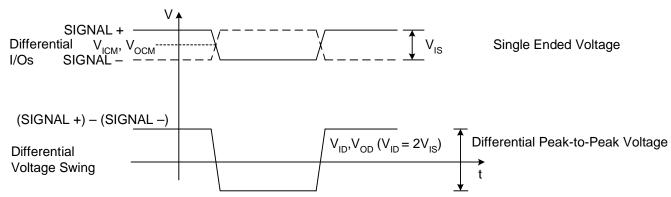


Figure 1. Differential Voltage Measurement (RXDIN, RXDOUT, RXCLK1, RXCLK2)

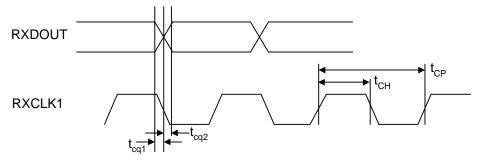


Figure 2. Data to Clock Delay

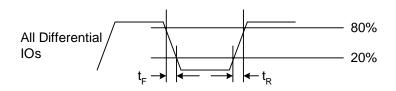


Figure 3. Rise/Fall Time Measurement

Table 2. DC Characteristics

 $(V_{DD} = 1.8 \text{ V} \pm 5\%, \text{ T}_{A} = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Supply Current	I _{DD}		_	278	TBD	mA
Power Dissipation	PD		—	0.5	TBD	W
Voltage Reference (VREF)	V _{REF}	VREF driving 10 kΩ load	1.21	1.25	1.29	V
Common Mode Input Voltage (RXDIN)	V _{ICM}		TBD	0.1	TBD	V
Differential Input Voltage Swing (RXDIN)	V _{ID}	See Figure 1	20		1.0	mV (pk-pk)
LVPECL Input Voltage HIGH (REFCLK)	V _{IH}		1.975	2.3	2.59	V
LVPECL Input Voltage LOW (REFCLK)	V _{IL}		1.32	1.6	1.99	V
LVPECL Input Voltage Swing, Differential pk-pk (REFCLK)	V _{ID}	Figure 1	250	_	2400	mV (pk-pk)
LVPECL Internally Generated Input Bias (REFCLK)	V _{IB}		1.65	1.95	2.3	V
LVDS Output High Voltage (RXDOUT, RXCLK1, RXCLK2)	V _{OH1}	100 Ω Load Line-to-Line	TBD	—	1.475	mV
LVDS Output Low Voltage (RXDOUT, RXCLK1, RXCLK2)	V _{OL1}	100 Ω Load Line-to-Line	0.925	_	TBD	V
LVDS Output Voltage, Differential pk-pk (RXDOUT, RXCLK1, RXCLK2)	V _{OSE}	100 Ω Load Line-to-Line, Figure 1	500	_	800	mV (pk-pk)
LVDS Common Mode Voltage (RXDOUT, RXCLK1, RXCLK2)	V _{CM}		1.125		1.275	V
Output Short to GND (RXDOUT, RXCLK1, RXCLK2)	I _{SC(-)}			25	TBD	mA
Output Short to V _{DD} (RXDOUT, RXCLK1, RXCLK2)	I _{SC(+)}		TBD	-100		μA
LVTTL Input Voltage Low	V _{IL2}	VDD33 = 3.3 V	_		0.8	V
(RXMSBSEL, RXCLK2DIV, RXCLK2DSBL, RXSQLCH, REFSEL, LTR, RESET)		VDD33 = 1.8 V	_		0.7	
LVTTL Input Voltage High	V _{IH2}	VDD33 = 3.3 V	2.0	_	_	V
(RXMSBSEL, RXCLK2DIV, RXCLK2DSBL, RXSQLCH, REFSEL, LTR, RESET)		VDD33 = 1.8 V	1.7			
LVTTL Input Low Current (RXMSBSEL, RXCLK2DIV, RXCLK2DSBL, RXSQLCH, REFSEL, LTR, RESET)	IIL				10	μA
LVTTL Input High Current (RXMSBSEL, RXCLK2DIV, RXCLK2DSBL, RXSQLCH, REFSEL, LTR, RESET)	I _{IH}				10	μΑ

Table 2. DC Characteristics (Continued)

 $(V_{DD} = 1.8 \text{ V} \pm 5\%, T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
LVTTL Input Impedance (RXMSBSEL, RXCLK2DIV, RXCLK2DSBL, RXSQLCH, REFSEL, LTR, RESET)	R _{IN}		10	—	—	kΩ
LVTTL Output Voltage Low	V _{OL2}	VDD33 = 1.8 V		—	0.4	V
(LOS, RXLOL)		VDD33 = 3.3 V	_	—	0.4	
L <u>VTT</u> L Output Voltage High	V _{OH2}	VDD33 = 1.8 V	1.4			V
(LOS, RXLOL)		VDD33 = 3.3 V	2.4		_	

Table 3. AC Characteristics (RXDIN, RXDOUT, RXCLK1, RXCLK2)

 $(V_{DD} = 1.8 \text{ V} \pm 5\%, T_A = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output Clock Frequency (RXCLK1)	f _{clkout}	See Figure 2	_	622.08	667	MHz
Duty Cycle (RXCLK1, RXCLK2)		tch/tcp, Figure 2	45	—	55	%
Output Rise and Fall Times (RXCLK1, RXCLK2,RXDOUT)	t _R ,t _F	Figure 3	—	50	—	ps
Data Invalid Prior to RXCLK1	t _{cq1}	Figure 2	—	—	200	ps
Data Invalid After RXCLK1	t _{cq2}	Figure 2		—	200	ps
Input Return Loss (RXIN)		400 kHz–10.0 GHz 10.0 GHz–16.0 GHz	18.7 TBD	_	_	dB dB
Slicing Adjust Dynamic Range		SLICELVL = 200-800 mV	-20	—	20	mV
Slicing Level Offset ¹ (referred to RXDIN)		SLICELVL = 200-800 mV	-500	—	500	μV
Slicing Level Accuracy		VSLICE	-5	—	5	%
Sampling Phase Adjustment ²		PHASEADJ = 200-800 mV	-45 ⁰	—	45 ⁰	
LOS Threshold Dynamic Range		LOSLVL = 200-800 mV	10	—	50	mV pk-pk
LOS Threshold Offset ³ (referred to RXDIN)		LOSLVL = 200-800 mV	-500	—	500	μV
LOS Threshold Accuracy		VLOS	-5	_	5	%

Note:

1. Slice level (referred to RXDIN) is calculated as follows: VSLICE = (SLICE_LVL - 0.4 • VREF)/15.

2. Sample Phase Offset is calculated as follows: PHASE OFFSET = 45° (PHASEADJ - $0.4 \cdot$ VREF)/0.3

3. LOS Threshold voltage (referred to RXDIN) is calculated as follows: VLOS = 30mV + (LOS_LVL - 0.4 • VREF)/15.

Table 4. AC Characteristics (PLL Characteristics)

 $(V_{DD} = 1.8 \text{ V} \pm 5\%, \text{ T}_{A} = -40^{\circ}\text{C to } 85^{\circ}\text{C})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Jitter Tolerance	J _{TOL(PP)}	f = 2.4 kHz	15	30	—	UI _{PP}
		f = 24 kHz	1.5	3.0	—	UI _{PP}
		f = 400 kHz	1.5	3.0	_	UI _{PP}
		f = 4 MHz	0.15	0.3	—	UI _{PP}
Acquisition Time	T _{AQ}			—	20	μs
Input Reference Clock Frequency	RC _{FREQ}	REFRATE = 1	_	622	667	MHz
		REFRATE = 0		155	167	MHz
Reference Clock Duty Cycle	RC _{DUTY}		40	50	60	%
Reference Clock Frequency Tolerance	RC _{TOL}		-100		100	ppm
Frequency Difference at which Receive PLL goes out of Lock (REFCLK compared to the divided down VCO clock)	LOL		TBD	600	1000	ppm
Frequency Difference at which Receive PLL goes into Lock (REFCLK compared to the divided down VCO clock)	LOCK		TBD	300	TBD	ppm
Note: Bellcore specifications: GR-137	7-CORE, Iss	sue 5, December 1998.				J

Table 5. Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
DC Supply Voltage	V _{DD}	-0.5 to TBD	V
LVTTL Input Voltage	V _{DD33}	-0.5 to 3.6	V
Differential Input Voltages	V _{DIF}	–0.3 to (V _{DD} + 0.3)	V
Maximum Current any output PIN		±50	mA
Operating Junction Temperature	T _{JCT}	-55 to 150	°C
Storage Temperature Range	T _{STG}	-55 to 150	°C
Package Temperature (soldering 10 seconds)		275	٥°
ESD HBM Tolerance (100 pf, 1.5 k Ω)		TBD	V
Note: Permanent device damage may occur if t should be restricted to the conditions as maximum rating conditions for extended	specified in the operati	onal sections of this data sheet.	

Table 6. Thermal Characteristics

Parameter	Symbol	Test Condition	Value	Unit
Thermal Resistance Junction to Ambient	φja	Still Air	38	°C/W

Functional Description

The Si5530 is a high performance, low power, fully integrated receiver for SONET/SDH applications operating at OC-192/STM-64 data rates. It saves board space by integrating a limiting amplifier, clock and data recovery unit, and a demultiplexer into a small 99-pin BGA package. Further space savings are realized because no external loop filter components are required to support CDR operation. The Si5530 also provides a low-speed LVDS interface that is compliant to the Optical Interface Forums SFI-4 standard.

To support long haul transmission applications, operation at data rates up to 10.7 Gbps is supported to accommodate forward error correction (FEC). In addition, programmable data slicing and sampling phase adjustment are provided to support bit-error-rate (BER) optimization.

Limiting Amplifier

The Si5530 incorporates a high sensitivity limiting amplifier with sufficient gain to directly accept the output of transimpedance amplifiers. High sensitivity is achieved by using a digital calibration algorithm to cancel out amplifier offsets. This algorithm achieves superior offset cancellation by using statistical averaging to remove noise that can degrade more traditional calibration routines.

The limiting amplifier provides sufficient gain to fully saturate with input signals that are less than 20 mV peak-to-peak differential. In addition, input signals that exceed 1 V peak-to-peak differential will not cause any performance degradation.

Loss-of-Signal Detection

The limiting amplifier includes circuitry that generates a loss-of-signal (LOS) alarm when the input signal amplitude on RXDIN falls below an externally controlled threshold. The Si5530 can be configured to drive the LOS output low when the differential input amplitude drops below a threshold set between ~10 mV and 50 mV pk-pk differential. Approximately 3 dB of hysteresis prevents unnecessary switching on LOS.

The LOS threshold is set by applying a voltage between 0.20 V and 0.80 V to the LOSLVL input. The voltage present on LOSLVL maps to an input signal threshold as follows:

$$V_{LOS} = \frac{(V_{LOSLVL} - 0.4xVREF)}{15} + 30 \text{ mV}$$

 V_{LOS} is the differential pk-pk LOS threshold referred to the RXDIN input, V_{LOSLVL} is the voltage applied to the LOSLVL pin, and VREF is reference voltage output on

the VREF pin.

The LOS detection circuitry is disabled by tieing the LOSLVL input to the supply (VDD). This forces the LOS output high.

Slicing Level Adjustment

To support applications that require BER optimization, the limiting amplifier provides circuitry that supports adjustment of the 0/1 decision threshold (slicing level) over a range of ± 20 mV when referred to the RXDIN input. The slicing level is set by applying a voltage between 0.20 V and 0.80 V to the SLICELVL input. The voltage present on SLICELVL sets the slicing level as follows:

$$V_{\text{LEVEL}} = \frac{(V_{\text{SLICE}} - 0.4 \text{xVREF})}{15}$$

 V_{LEVEL} is the slicing level referred to the RXDIN input, V_{SLICE} is the voltage applied to the SLICE_LVL pin, and VREF is reference voltage output on the VREF pin.

The slicing level adjustment may be disabled by tieing the SLCLVL input to the supply (VDD). When slicing is disabled, the slicing offset is set to 0.0 V relative to internally biased input common mode voltage for RXDIN.

Clock and Data Recovery (CDR)

The Si5530 uses an integrated CDR to recover clock and data from a non-return to zero (NRZ) signal input on RXDIN. The recovered data clock is used to regenerate the incoming data by sampling the output of the limiting amplifier at the center of the NRZ bit period. The recovered clock and data is then deserialized by a 1:16 demultiplexer and output via a LVDS compatible low speed interface (RXDOUT[15:0], RXCLK1, and RXCLK2).

Sample Phase Adjustment

In applications where it is not desirable to recover data by sampling in the center of the data eye, the Si5530 supports adjustment of the CDR sampling phase across the NRZ data period. When sample phase adjustment is enabled, the sampling instant used for data recovery can be moved over a range of $\pm 45^{\circ}$ relative to the center of the incoming NRZ bit period. Adjustment of the sampling phase is desirable when data eye distortions are introduced by the transmission medium.

The sample phase is set by applying a voltage between 0.20 V and 0.80 V to the PHASEADJ input. The voltage present on PHASEADJ maps to sample phase offset as follows:

 $PhaseOffset \ = \ \frac{45^{\circ}x(V_{PHASE} - 0.4xVREF)}{0.30}$

Phase Offset is the sampling offset in degrees from the center of the data eye, V_{PHASE} is the voltage applied to the PHASEADJ pin, and VREF is reference voltage output on the VREF pin. A positive phase offset will adjust the sampling point to lead the default sampling point at the center of the data eye, and a negative phase offset will adjust the sampling point to lag the default sampling point.

Data recovery using a sampling phase offset is disabled by tieing the PHASEADJ input to the supply (VDD). This forces a default phase offset of 0° to be used for data recovery.

Lock Detect

The Si5530 provides lock-detect circuitry that indicates whether the PLL has achieved frequency lock with the incoming data. This circuit compares the frequency of a divided down version of the recovered clock with the frequency of the supplied reference clock (REFCLK). If the recovered clock frequency deviates from that of the reference clock by the amount specified in Table 4 on page 7, the PLL is declared out of lock, and the loss-oflock (RXLOL) pin is asserted. In this state, the PLL will try to reacquire lock with the incoming data stream. During reacquisition, the recovered clock frequency (RXCLK1 and RXCLK2) will drift over a 1% range relative to the supplied reference clock. The RXLOL output will remain asserted until the recovered clock frequency is within the REFCLK frequency by the amount specified in Table 4 on page 7.

Lock-to-Reference

In applications where it is desirable to maintain a stable output clock during an alarm condition like loss-ofsignal, the lock-to-reference input (LTR) can be used to force a stable output clock. When LTR is asserted, the CDR is prevented from acquiring the data signal and the CDR will lock the RXCLKOUT1 and RXCLKOUT2 outputs to the provided REFCLK. In typical applications, the LOS output would be tied to the LTR input to force a stable output clock.

Reference Clock

The CDR within the Si5530 uses a reference clock to center the PLL frequency so that it is close enough to the data frequency to achieve lock. The device is designed to operate with reference clock sources that are either 1/16th or 1/64th the input data rate. The Si5530 will operate with data streams between 9.9 Gbps and 10.7 Gbps and the reference clock should

be scaled accordingly. For example, to support 10.66 Gbps operation the REFCLK frequencies would be approximately 166 MHz or 666 MHz. The REFRATE input pin is used to configure the device for operation with one of the two supported reference clock submultiples of the data rate.

Deserialization

The Si5530 uses a 1:16 demultiplexer to deserialize the high-speed input. The deserialized data is output on a 16-bit parallel data bus RXDOUT[15:0] synchronous with the rising edge of RXCLK1. This clock output is derived by dividing down the recovered clock by a factor of 16.

Serial Input to Parallel Output Relationship

The Si5530 provides the capability to select the order in which the received serial data is mapped to the parallel output bus RXDOUT[15:0]. The mapping of the receive bits to the output data word is controlled by the RXMSBSEL input. If RXMSBSEL is tied low, the first bit received is output on RXDOUT0 and the following bits are output in order on RXDOUT1 through RXDOUT15. If RXMSBSEL is tied high, the first bit received is output on RXDOUT15, and the following bits are output in order on RXDOUT14 through RXDOUT0.

Auxiliary Clock Output

To support the widest range of system timing configurations, a second clock output is provided on RXCLK2. This output can be configured to provide a clock that is a 1/16th or 1/64th submultiple of the high speed recovered clock. The divide factor used to generate RXCLK2 is controlled via the RXCLKDIV2 input as described in "Pin Descriptions: Si5530" on page 13. In applications which do not use RXCLK2, this output can be powered down by forcing the RSCLK2DSBL input high.

Data Squelch

During some system error conditions, such as LOS, it may be desirable to force the receive data output to zero in order to avoid propagation of erroneous data into the downstream electronics. In these applications, the Si5530 provides a data squelching control input, RXSQLCH. When this input is active low, the data on RXDOUT will be forced to 0.

Bias Generation Circuitry

The Si5530 makes use of an external resistor to set internal bias currents. The external resistor allows precise generation of bias currents which significantly reduces power consumption versus traditional implementations that use an internal resistor. The bias generation circuitry requires a 3.09 k Ω (1%) resistor connected between REXT and GND.

Voltage Reference Output

The Si5530 provides an output voltage reference that can be used by an external circuit to set the LOS threshold, slicing level, or sampling phase adjust. One possible implementation would use a resistor divider to set the control voltage for LOSLVL, SLICELVL, or PHASEADJ. A second alternative would use a DAC to set the control voltage. Using this approach, VREF would be used to establish the range of a DAC output. The reference voltage is nominally 1.25 V.

Si5530 Pinout: 99 BGA

10	9	8	7	6	5	4	3	2	1	
RXDOUT[4]+	RXDOUT[2]-	RXDOUT[2]+	RXDOUT[0]-	RXDOUT[0]+	RXCLK[1]-	RXCLK[1]+	RXCLK2 DSBL	REXT		A
RXDOUT[4]-	RXDOUT[3]-	RXDOUT[3]+	RXDOUT[1]-	RXDOUT[1]+	RXCLK[2]-	RXCLK[2]+	NC	VREF	SLICELVL	в
RXDOUT[6]+	RXDOUT[5]+	GND	GND	GND	GND	GND	RSVD_ GND	LOSLVL	PHASEADJ	с
RXDOUT[6]-	RXDOUT[5]-	GND	VDD	VDD	VDD	VDD	RXSQLCH	GND	GND	D
RXDOUT[8]+	RXDOUT[7]+	GND	VDD	VDD	VDD	VDD	RSVD_ GND	GND	RXDIN+	E
RXDOUT[8]-	RXDOUT[7]-	GND	VDD	VDD	VDD	VDD	RSVD_ GND	GND	RXDIN-	F
RXDOUT[10]+	RXDOUT[9]+	GND	VDD	VDD	VDD	VDD	RSVD_ VDD33	GND	GND	G
RXDOUT[10]-	RXDOUT[9]-	GND	GND	GND	GND	GND	VDD33	RSVD_ GND	LTR	н
RXDOUT[12]+	RXDOUT[11]+	RXDOUT[11]-	RXDOUT[13]+	RXDOUT[13]-	RXDOUT[15]+	RXDOUT[15]-	REFRATE	RSVD_ VDD33	RXLOL	J
RXDOUT[12]-	RXDOUT[14]+	RXDOUT[14]-	REFCLK+	REFCLK-	RSVD_ GND	RXMSBSEL	RXCLK2DIV	RESET	LOS	к

Bottom View

Figure 4. Si5530 Pin Configuration (Bottom View)

<u>Si5530</u>

	1	2	3	4	5	6	7	8	9	10
А		REXT	RXCLK2 DSBL	RXCLK[1]+	RXCLK[1]-	RXDOUT[0]+	RXDOUT[0]-	RXDOUT[2]+	RXDOUT[2]-	RXDOUT[4]+
В	SLICELVL	VREF	NC	RXCLK[2]+	RXCLK[2]-	RXDOUT[1]+	RXDOUT[1]-	RXDOUT[3]+	RXDOUT[3]-	RXDOUT[4]-
с	PHASEADJ	LOSLVL	RSVD_ GND	GND	GND	GND	GND	GND	RXDOUT[5]+	RXDOUT[6]+
D	GND	GND	RXSQLCH	VDD	VDD	VDD	VDD	GND	RXDOUT[5]-	RXDOUT[6]-
E	RXDIN+	GND	RSVD_ GND	VDD	VDD	VDD	VDD	GND	RXDOUT[7]+	RXDOUT[8]+
F	RXDIN-	GND	RSVD_ GND	VDD	VDD	VDD	VDD	GND	RXDOUT[7]-	RXDOUT[8]-
G	GND	GND	RSVD_ VDD33	VDD	VDD	VDD	VDD	GND	RXDOUT[9]+	RXDOUT[10]+
н	LTR	RSVD_ GND	VDD33	GND	GND	GND	GND	GND	RXDOUT[9]-	RXDOUT[10]-
J	RXLOL	RSVD_ VDD33	REFRATE	RXDOUT[15]-	RXDOUT[15]+	RXDOUT[13]-	RXDOUT[13]+	RXDOUT[11]-	RXDOUT[11]+	RXDOUT[12]+
к	LOS	RESET	RXCLK2DIV	RXMSBSEL	RSVD_ GND	REFCLK-	REFCLK+	RXDOUT[14]-	RXDOUT[14]+	RXDOUT[12]-
l										

Top View

Figure 5. Si5530 Pin Configuration (Transparent Top View)

Pin Descriptions: Si5530

Pin Number(s)	Name	I/O	Signal Level	Description
C4–8, D8, D1– 2, E8, E2, F8, F2, G8, G1–2, H4–8	GND	GND		GND.
K1	LOS	0	LVTTL	Loss-of-Signal. This output is driven low when the peak-to-peak signal amplitude is below threshold set via LOSLVL.
C2	LOSLVL	I	_	LOS Threshold Level. Applying an analog voltage to this pin allows adjustment of the Threshold used to declare LOS. Tieing this input high disables LOS detec- tion and forces the LOS output high.
H1	LTR	I	LVTTL	Lock-to-Reference. This input forces a stable output clock by locking RXCLK1 and RXCLK2 to the provided refer- ence. Driving LTR low activates this feature.
B3	NC			No Connect. Reserved for device testing leave electrically unconnected.
C1	PHASEADJ	I	_	Sampling Phase Adjust. Applying an analog voltage to this pin allows adjustment of the sampling phase across the data eye. Tieing this input high nominally centers the sampling phase.
K6–7	REFCLK–, REFCLK+	I	LVPECL	Differential Reference Clock. The reference clock sets the initial operating fre- quency used by the onboard PLL for clock and data recovery. The device will operate with refer- ence frequencies that are 1/16th or 1/64th the input data rate (nominally 155 MHz or 622 MHz).
J3	REFRATE	I	LVTTL	Reference Clock Select. This input configures the Si5530 to operate with one of two reference clock frequencies. If REF- SEL is held high, the device requires a reference clock that is 1/16 the input data rate. If REFSEL is low, a reference clock at 1/64 the input data rate is required.
K2	RESET	Ι	LVTTL	Device Reset. Forcing this input low for a at least 1μ s will cause a device reset. For normal operation, this pin should be held high.

Pin Number(s)	Name	I/O	Signal Level	Description
A2	REXT			External Bias Resistor. This resistor is used by onboard circuitry to establish bias currents within the device. This pin must be connected to GND through a $3.09 \text{ k}\Omega$ (1%) resistor.
C3, E3, F3, H2, K5	RSVD_GND			Reserved Tie to Ground. Must tie directly to GND for proper operation.
G3, J2	RSVD_VDD33			Reserved Tie to VDD33. Must tie directly to VDD33 for proper operation.
A4–5	RXCLK1+, RXCLK1–	0	LVDS	Differential Clock Output 1. The clock recovered from the signal present on RXDIN is divided down by 16 and output on CLKOUT. In the absence of data, a stable clock on RXCLK1 can be maintained by asserting LTR.
B4–5	RXCLK2+, RXCLK2–	0	LVDS	Differential Clock Output 2. An auxiliary output clock is provided on this pin that may be a divided down version of the high speed clock recovered from the signal present on RXDIN. The divide factor used in generating RXCLK2 is set via RXCLK2DIV.
K3	RXCLK2DIV	I	LVTTL	Clock Divider Select. This input selects the divide factor used to generate the RXCLK2 output. When this input is driven low, RXCLK2 is 1/16th the recovered high-speed clock. When driven high, RXCLK2 is 1/64th the recovered high speed clock rate.
A3	RXCLK2DSBL	I	LVTTL	RXCLK2 Disable. Driving this input high will disable the RXCLK2 output. This would be used to save power in applications that do not require an auxiliary clock.
E1, F1	RXDIN+, RXDIN–	I	High Speed Differential	Differential Data Input. Clock and data are recovered from the high speed data signal present on these pins.
A6-10, B6-10, C9-10, D9-10, E9-10, F9-10, G9-10, H9-10, J4-10, K8-10	RXDOUT[15:0]–, RXDOUT[15:0]+	0	LVDS	Differential Parallel Data Output. The data recovered from the signal present on RXDIN is demultiplexed and output as a 16-bit parallel word via RXDOUT[15:0]. These outputs are updated on the rising edge of RXCLK1.
J1	RXLOL	0	LVTTL	Loss-of-Lock. This output is driven low when the recovered clock frequency deviates from the reference clock by the amount specified in Table 4.

Pin Number(s)	Name	I/O	Signal Level	Description
K4	RXMSBSEL	I	LVTTL	Data Bus Receive Order. This determines the order of the received data bits on the output bus. For RXMSBSEL = 0, the first data bit received is output on RXDOUT[0] and following data bits are output on RDOUT[1] through RXDOUT[15]. For RXMSBSEL = 1, the first data bit is output on RXDOUT[15] and following data bits are out- put on RXDOUT[14] through RXDOUT[0].
D3	RXSQLCH	I	LVTTL	Data Squelch. When this input is low, the data on RXDOUT is forced to 0. Set RXSQLCH high for normal operation.
B1	SLICELVL	I		Slicing Level Adjustment. Applying an analog voltage to this pin allows adjustment of the slicing level applied to the input data eye. Tieing this input high nominally sets the slicing offset to 0.
D4–7, E4–7, F4–7, G4–7,	VDD	VDD	1.8 V	Supply Voltage. Nominally 1.8 V.
H3	VDD33	VDD33	1.8 V or 3.3 V	Digital Output Supply. Must be tied to either 1.8 V or 3.3 V. When tied to 3.3 V, LVTTL compatible output voltage swings on RXLOL and LOS are supported.
B2	VREF	0	Voltage Ref	Voltage Reference. The Si5600 provides an output voltage reference that can be used by an external circuit to set the LOS threshold, slicing level, or sampling phase adjustment. The equivalent resistance between this pin and GND should not be less than 10 k Ω . The reference voltage is nominally 1.25 V.

Ordering Guide

Part Number	Package	Temperature
Si5530-BC	99 BGA	–40°C to 85°C

Table 7. Ordering Guide

Package Outline

Figure 6 illustrates the package details for the Si5530. Table 8 lists the values for the dimensions shown in the illustration.

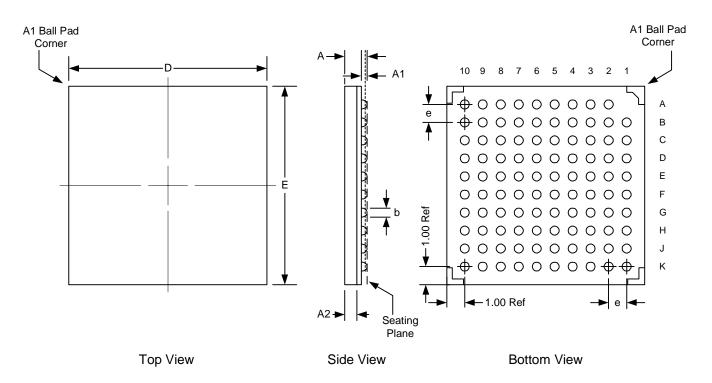


Figure 6. 99-Ball Grid Array (BGA)

Symbol	Millimeters				
	Min	Nom	Max		
А	1.30	1.40	1.50		
A1	0.31	0.36	0.41		
A2	0.65	0.70	0.75		
b	—	0.46	—		
D	—	11.00	—		
Е		11.00	—		
е		1.00			

Table 8. Package Diagram Dimensions

Contact Information

Silicon Laboratories Inc.

4635 Boston Lane Austin, TX 78735 Tel: 1+(512) 416-8500 Fax: 1+(512) 416-9669 Toll Free: 1+(877) 444-3032

Email: productinfo@silabs.com Internet: www.silabs.com

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories, Silicon Labs, and SiPHY are trademarks of Silicon Laboratories Inc. Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

